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ABSTRACT 
 
Monte Carlo Codes are based on a common numerical procedure called the Monte Carlo Method. This 
method relies on the use of stochastic processes in the solution of problems. PENELOPE – is a Monte 
Carlo Code developed for the purpose of the study of transport of electrons, photons and their resultant 
showers in materials. Simulation is achieved via basic events of photoelectric, or pair-production or 
Compton scattering interactions with their attendant energy-loss through matter. PENELOPE 2001 uses a 
simulation algorithm based on scattering models that combines numerical data- base with analytical cross-
section and material libraries for the different interaction models. Fundamental concepts in the development 
of this code and a pictorial demonstration of 60Co(1332.502keV)  photon transport through lead and air are 
hereby presented. This code is an alternative to many physical laboratory experiments. 
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INTRODUCTION 

Fast computers which are indispensable tools for both computational and analytical research, are now 
available due to the recent progress in information technology. This feat has revolutionized scientific 
research and made physical experimentation faster and much easier. At its inception, the Monte Carlo 
method was first applied on the MANIAC computer at Los Alamos National laboratory [1] to predict the 
rate of neutron chain reaction in fission devices in mid 1946 during the Manhattan Project of World War II. 
Today, recent developments, modification and applications of the code have resulted in significant 
technological break-through in nuclear instrumentation [2-4]. The Monte Carlo Method, now applied in 
several areas of research has given rise to several codes of which PENELOPE is one of them. Basically, 
Monte Carlo calculation makes use of random numbers and has been found useful in predicting stochastic 
events giving rise to various forms of input data for simulating and modeling of experiments [3,4]. 
Application of the Monte Carlo techniques is mostly desirable in nuclear science and technology where  it 
becomes needful to have an a priori data or information before risking the experimentation process, as is 
the case with fission related experiments. This paper is aimed at introducing the basic concept of the Monte 
Carlo Method, beginning with the numerical aspects behind the code and simulation of radiation transport 
problems as is the case with PENELOPE. The generic aspects of the Monte Carlo Method will be 
discussed, and its consequent application in the PENELOPE code will be highlighted. 
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THE MONTE CARLO METHOD 

The Monte Carlo method could be studied by focusing on the problems of estimating the probability of a 
particle (photon) interacting on a shield (matter), undergoing successive collisions with scattering centres 
and perhaps escaping if possible (Fig.1). 
 

 

 

Figure 1:  Scattering of particles as they interact with matter 

 

The physics of the problem on a microscopic level involves collision kinematics where both elastic and 
non-inelastic scattering will prevail on the fate of the photon as the direction of motion and energy of the 
incoming photon will all come to bare on the trajectory of the scattered photons [1]. 
The knowledge of the reaction cross-sections and succession of free path-lengths will all contribute in the 
rubrics of the particle history. In order to attain a lower uncertainty in the Monte Carlo Method from an 
optimum particle history a variance reduction technique has to be applied which will include truncation as 
well as population control of the events. 
Transport of particles (electrons or photons) in matter and centers that generate them can be regarded as 
sequences of random events. Flights of these particles occur in straight-line paths defined randomly by the 
geometry cross-sections and scattering centers of the media in which they traverse. 
The outcome of these interactions such as the type of radiation emanating, its energy, direction, and other 
relevant variables are random events. A Monte Carlo simulation of such events can be constructed if one 
knows a priori the probability distribution function (pdf) that governs each step which could either be 
described by a physical system or a mathematical formulation of both. The pdfs could be assayed through 
the differential cross-sections. Essentially the Monte Carlo simulation process therefore has the following 
basic components: 

 Probability distribution function (pdf) that describes the physical or mathematical system 
 Random number generator that gives random numbers uniformly distributed on the unit 

interval 
 Sampling rule from the specified pdfs, on the unit interval 
 Scoring (or tallying ) whose outcome must be accumulated into overall tallies or scores for the 

quantities of interest 
 Estimation of the statistical error (variance) as a function of the number of trials (runs) 
 Variance reduction techniques for reducing the variance in the estimated solution which is 

needful in the reduction of the computational time for  the simulation and  
 Parallelization or vectorization used in the algorithms to allow Monte Carlo methods be 

implemented efficiently on advanced computer architectures. 
 

MONTE CARLO METHODS AND NUMERICAL ANALYSIS 
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The fundamental basis for the Monte Carlo method is the use of random numbers and random variables. 

Consider x to be a random variable with values in the interval: 

maxmin xxx         (1) 

The probability of having x in the interval (a,b) is given as: 

P { bxax  }       (2) 

which is defined as the ratio n/N of the number n of values x that fall within that interval and the total 

number N  . 

 Assuming there exists a differential interval of length dx about 1x  The probability of obtaining x 

will then be : 

dxxpdxxxxxP )(}{ 111       (3) 

where p(x) is the probability distribution function (pdf) of x. We therefore seek normalization due to two 

conditions: 

1) Negative probabilities may not have any meaning in real situations 

2) Values obtained for x must lie between xmin and xmax hence, we therefore normalize the pdf to 

unity since it must be defined in the positive sense thus: 

p(x)  and   
max

min

1)( 1

x

x

dxxp       (4) 

Equation 4 is the condition for the definition of a pdf for any given function. Monte Carlo uses the uniform 

distribution function of the form: 

 



 


otherwise

xxxifxx
xU xx 0

)/(1
)( maxminminmax

maxmin    (5) 

 

Such a function is discontinuous and could also include the Dirac delta )( 0xx   property defined for the 

limits a,b thus: 
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
b

a

xf )( )( 0xx  dx = 







bxoraxif

bxaifxf

00

00

0

,)(
   (6) 

for any function f(x) continuous in 0x . 

MONTE CARLO INTEGRATION 

James [5] has shown that Monte Carlo calculations are equivalent to integrations. Consider a one-

dimensional integral of the form: 


b

a

dxxFI )(         (7) 

Consider a pdf as defined in the form p(x), drawn from a sequence of samples xi , i = 1,2,…,N  then we 

recast the integral in equation 7 to take into account our pdf and rewrite the integral with an expectation 

value thus: 

 
b

a

fdxxpxfI )()(       (8) 

thus, setting  f(x) = F(x)/p(x) and assuming that p(x) > 0 in (a,b) and p(x) = 0  outside this interval. 

Monte Carlo evaluation of the integral proceeds by generating a large number N of random points xi from 

the pdf given as p(x) and accumulate the sum values f(xi) in a counter. At the end of the calculation, the 

expected value of f is estimated as: 

f  = 


N

i
ixf

N 1

)(
1

       (9) 

The law of large numbers requires that if N becomes very large then  

f  1  (Probability law).      (10) 

Statistically the above condition implies that the Monte Carlo result in the form f  is a consistent estimator 

of the integral in equation 8 and valid for any function f(x). 

ESTIMATION OF VARIANCE 

 Recall the law of large numbers 
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f  



N

i
ixf

NN 1

)(
1lim

      (11) 

By definition, the variance of a function f(x) is thus: 

Var{f(x)}=   22 )()( fdxxpxf      (12) 

Using equations 8 – 12 we obtain the variance as: 

var{f(x)} = 





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1
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)]([
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  (13) 

which is a measure of the dispersion of the pdf. This implies that the outcome of the Monte Carlo trials 

(runs) with independent sequences of N random numbers xi from p(x) will yield different estimates of the 

random variable from the pdf. 

 If we recall the definition of the standard deviation as: 

)var( ff   = 
N

xf )}(var{
     (14) 

we obtain a measure of the statistical uncertainty of the Monte Carlo estimate f . The implication of this is 

that in order to reduce the statistical uncertainty by a factor of 10 we have to increase the sample size (runs) 

by a factor of 100. This therefore sets a limit to the accuracy attained to the available computer power. The 

statistical uncertainties can be lowered by the variance reduction techniques [6,7]. 

EXPERIMENTAL 
 
PENELOPE is a Monte Carlo code devised to simulate PENetration and Energy LOss of Positrons and 
Electrons in matter in the energy range of 100 eV to 1 GeV. Data bases include tables of physical 
properties, interaction cross-sections, materials, etc, which are read when the program is on. The material 
data file is created by an auxiliary program MATERIAL, known to extract atomic interaction data from the 
data-base. The program PENSLAB simulates electron/photon showers within a material slab and generates 
detailed information and many quantities of physical interest [8] some of which include: 

(i) Fractions of primary particles that are transmitted, backscattered and absorbed and a number 
of average quantities (track length within the sample; number of events of each kind per 
particle; energy, direction and lateral displacement of particles that leave the sample; etc.) 

(ii) Energy distribution of transmitted and backscattered primary particles 
(iii) Angular distribution of transmitted and backscattered particles 
(iv) Depth-dose distribution (i.e deposited energy per unit depth) 
(v) Depth distribution of deposited charge and  
(vi) Distribution of energy deposited in the slab. 
When using PENELOPE it is pertinent to be aware of the simulation parameters. These parameters to 

an extent will invariably affect the results notably the speed and accuracy of the simulation of the electrons 
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and positrons. The parameters include the absorption energy, elastic scattering parameters which are 
usually limited to the interval (0, 0.2); the cutoff energies and the allowed step length that defines the 
number of events. These are all user-selected parameters. The versatility in simulating quick computerized 
results makes PENELOPE very useful in shielding calculations. 
 

RESULTS AND DISCUSSION 

A simulated shower of photons from a source (60Co-1332.502 keV) on a lead and air shields of the same 
thickness were examined. Diagrams obtained from PENELOPE version 2001 using some of the main 
programs like PENSLAB are hereby shown as Figs. 2 and 3. 
 The absorption energies were set equal to 10 keV (for all kinds of particles) while the cut-off set at 
Wcr = 10 eV thus disregarding the emission of soft bremsstrahlung (i.e for all W < 10 eV). 
 PENELOPE’s material definition file used was lead.mat and air.mat. The under listed parameters 
are defined in each of these files for lead and air respectively. 

Mass density 
Number of elements in the molecule 
Molecular density 
Plasma energy  
Mean excitation energy 
Number of oscillators and  
Cross-section tables. 

Slab thickness = 4.237 cm 
Maximum step length = 0.004 cm 
Number of showers to be simulated = 2147483647 
Computation time = 300 sec 
Figs. 2 and 3 are pictorial representation of the Monte Carlo simulated results of the program MAINSLAB. 
The figures show the simulated pictures of the particle tracks through lead slab and an air medium 
respectively, of the same thickness, 4.237 cm. It is a shower resulting from primary photons simulated. It 
shows the actual trace of each particle’s path, within the slab, from initiation to the end of its history. The 
shower shows 
 
 

 

 
Figure 2:  Scattering tracks of transmitted particles on a Lead slab of thickness 4.237 cm 
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Figure 3:  Linear transmission of photons on an air slab of thickness of 4.237 cm 

how photons as the primary particles from 60Co(1332.502keV) generates secondary  particles. The 
computer output depicts electrons (in red), photons (in yellow) and positrons (in blue). It is interesting to 
see that photons transmitted through air are not scattered (they traverse in a straight line) while scattering of 
particles were observed for the Lead slab. This result can assist us in predicting an appropriate Lead 
thickness that will shield completely (stop the photon tracks within the lead material) a given photon 
energy. 
 

CONCLUSION 

Photon interaction in lead and air has been investigated using the PENELOPE Code. The pictorial 
representation of gamma ray transport in lead and air has been demonstrated by the application of this code. 
One can use this alternative method to determine or predict a shielding thickness that will stop photons of 
particular energies. The scientific community can take advantage of the capabilities of the PENELOPE 
code for the investigation of radiation transport in matter, as it can be applied where many physical 
laboratory experiments are not possible or inaccessible, especially in a reactor core. 
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