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Abstract

In this paper, we study some properties of a new counting polynomial of (molecular) graphs that called Pi
I1(G,x) polynomial. This counting polynomial and its index were proposed by M.V. Diudea. It is defined
on the ground of “opposite edge strips” ops and Pi II(G,x)= polynomial can also be calculated by ops
“opposite edge strips” counting. In continue, closed analytical formulas for I1(G,x) and II(G) of a physico
chemical structure of V-phenylenic Planar VPHP[m,n], Nanotubes VPHX[m,n] and Nanotori VPHY[m,n]
are given. Copyright © WJSTR, all rights reserved.
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1. INTRODUCTION

Let G=(V;E) be a simple molecular graph without directed and multiple edges and without loops, the vertex and
edge sets of it are represented by V=V(G) and E=E(G), respectively. In chemical graph theory and in mathematical
chemistry, a molecular graph or chemical graph is a representation of the structural formula of a chemical compound
in terms of graph theory. In other words, the vertices correspond to the atoms of the molecule, and the edges
represent to the chemical bonds. Also, if e is an edge of G, connecting the vertices u and v, then we write e=uv and
say "u and v are adjacent".

Chemical graph theory is a branch of mathematical chemistry which applies graph theory to mathematical modeling
of chemical phenomena [1-3]. This theory had an important effect on the development of the chemical sciences.
Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure
using mathematical methods without necessarily referring to quantum mechanics.
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Two edges/bonds e=uv and f=xy of G are called co-distant, “e co f, if and only if they obey the following relation:
[4, 5]
d(v,x)=d(v,y)+1=d(u,x)+1=d(u,y)

Relation co is reflexive, that is, e co e holds for any edge e of G; it is also symmetric, if e co f then f co e and in
general, relation co is not transitive. If “co” is also transitive, thus an equivalence relation, then G is called a co-
graph and the set of edges is C(e):={f€ E(G)| e co f}), called an orthogonal cut (denoted by oc) of G. Klavzar [6]
has shown that relation co is a theta Djokovi¢ [7], and Winkler [8] relation.

In other words, let m(G,c) be the number of goc strips of length c (i.e., the number of cut-off edges) in the graph G.
The Omega Polynomial Q(G,x), [9-12] for counting goc strips in G was defined by Diudea as

Q(G,x):;m(G,c)xC

The summation runs up to the maximum length of qoc strips in G. The first derivative (in x=1) equals the number of
edges in the graph

Q(G,1)=> _m(G,c)xc=|E(G)|

Other counting polynomials “®(G,x), SA(G,x) and 71(G,x)* was defined as

®(G,x) =Y m(G,c)cx’
Sd(G,x) =Y. m(G,c)x=I

(G, x) = > m(G,c)ex=°

The first derivative (computed at x=1) of these counting polynomials provide interesting topological indices [13-24]:

®(G,1) =D m(G,c)xc?
Sd'(G,) =Y m(G,c)x(E(G)|-c)

I1'(G,1) = > m(G,c)xc(E(G)|-¢)

In Refs [25-44] some topological indices of a physico chemical structure of V-phenylenic nanotube and V-
phenylenic nanotori are computed. In addition, the Sadhana Polynomial and index of V-phenylenic nanotube and
nanotori Sd(G,x) were computed in 2008 by A.R. Ashrafi et. al, [24] and also, the Theta Polynomial and index of V-
phenylenic planar, nanotube and nanotori were computed recently by M.R. Farahani [23]. In this report, we
continue this work to compute a closed formula for 77(G,x) and 71(G) of molecular graphs V-phenylenic Planar
VPHP[m,n], Nanotubes VPHX[m,n] and Nanotori VPHY[m,n]. Our notation is standard and mainly taken from Refs
[1-5].

2. MAIN RESULTS AND DISCUSSION

The goal of this section is to computing the Pi polynomial 77(G,x) and index 71(G) of molecular graphs V-phenylenic
Planar, nanotube and nanotori. The novel phenylenic and naphthylenic lattices proposed can be constructed from a
square net embedded on the toroidal surface. Phenylenes are polycyclic conjugated molecules, composed of four
membered ring (=square) and six-membered rings (=hexagons) such that every four membered ring 4-membered
cycle is adjacent to two 6-membered cycles, and no two six-membered rings are mutually adjacent. Each four-
membered ring lies between two six-membered rings, and each hexagon is adjacent only to four-membered rings
[25-30].
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Following M.V. Diudea [31] for all integer number m,n, we denote a V-Phenylenic nanotube and V-Phenylenic
nanotorus by G=VPHX[m,n] and H=VPHY[m,n], respectively. It is essy to see that all molecular graph V-
Phenylenic have 6mn vertices/atoms and there are 9mn-m and 9mn edges/bonds in VPHX[m,n] and VPHY[m,n],
respectively. And also we denote a V-Phenylenic planar with 6mn vertices/atoms and 9mn-2n-m edges/bonds by
K=VPHP[m,n]. A general representation of these molecular graphs and nano structures are shown in Figure 1,
Figure 2 and Figure 3 and paper series [25-44].

Now by using Cut Method and Orthogonal Cut Method, we have Theorems 1, 2 and 3 for Pi 77(G,x) polynomial and
I1(G) index of three molecular graphs V-phenylenic Planar VPHP[m,n], Nanotubes VPHX[m,n] and Nanotori

VPHY[m,n] as follow.
_I/\l—'

e

HOHOHOHD

Figure 1: [23] The 2-D of V-Phenylenic Nanotube K=VPHP[m,n].

Theorem 1. Ym,n €, Consider the V-Phenylenic Planar K=VPHP[m,n] then the Pi polynomial of VPHP[m,n]
is:
YV m>n, TI(VPHP[m,n],x)=2mnx*™2"3M4-2n(3m-2n-+1)x"™ 4"
n-1
+8 ix9mn—2n—m—2i +m(n_1)x9mn-2n-2m
YV m<n, II(VPHP[m,n],x)=2n(n-1)x"""*"™+2m(2n-2m+3) x>m2"3"
m-1
+8 iXan—Zn—m—Zi +m(n_1)X9mn—2n—2m
And the Pi index of VPHP[m,n] is
V' m>n, I(VPHP[m,n])=81m?n’+ % n®-48mn? -23m?n+8n’+2m?+4mn- g4n

V m<n, [I(VPHP[m,n])=81m?n*+ % m®-27m*n-40mn? -2m?+8n+4mn- g4n

Theorem 2. The 17 polynomial and 77 index of V-Phenylenic nanotube VPHX[m,n] are equal to:
IY(VPHX[m, n],x):6mnX9mn»2n»m+m(n_l)x9mn—2m+2mnx9mn—3m

TI(VPHX[m,n])=81mn°-18m°n -12mn?
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Theorem 3. The 71 polynomial and 77 index of V-Phenylenic Nanotori H=VPHY[m,n] are equal to:
II(VPHY[m,n],x)=4mnx™ 2™+ 2mnx*™ 2"+ 2mnx*™"2"+m(n-1)x ™™

II(VPHY[m,n])=73m?n*-5nm?-4mn?+m?

Figure 2: [23] The 2-D of V-Phenylenic Nanotube G=VPHX[m,n].

TG i
o~ ST Y —H\.—%

To compute the Pi polynomial and index of Phenylenic molecular graph, it is enough to calculate C(e) for all
edges/bonds. So, by using the Cut Method and from Figures 1 and results herein References 23, 24 one can see that
there are four types of edges-cuts for the VV-Phenylenic Planar K=VPHP[m,n]. We denote the corresponding edges-

cut by G (i=1,... Max{m,n}) and C; (i=1,2,3). By definitions of /7(G,x), I1(G) and Tables 1 and 2, we have

Y m>n:
|E(VPHP[m,n])|-C

vPHPmn]X)= . _m(VPHP[m,n],c).c.x

:2mnX9mn—2n—m—2m+m(n_1)X9mn—2n—m—m+2n(m_l)xgmn—Zn—m—Zn
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n-1

+4Z ( % ) x Omn-2n-m-2i +4n(m-n+1)x9mn—2n—m-2n

i=1

n-1
:2mnxgm”'2n'3m+2n(3m_2n+1)x9mn-4n-m +82 ix9mn—2n—m—2|
i=1

+m(n_1)X9mn—2n—2m

Table 1: All quasi-orthogonal cuts of V-Phenylenic Planar K=VPHP[m,n], for m>n.

quasi-orthogonal cuts The length of goc strips The number of goc strips
C; 2m n
C, m n-1
Cs 2n m-1
Q Yi=1,..n-1 2i 4
Qw 2n 4(m-n+1)

V m<n: II(VPHP[m,n] ,x)=2mnx*™#" ™24 m(n-1)x¥™" 204 o0 (m-1)x 220

m-1
+4Z ( 2i ) X9mn—2n—m—2i +4m(n_m+1)x9mn-2n-m-2m
i=1

:2n(n_l)X9mn—4n—m+2m(Zn_2m+3) X9mn—2n—3m

m-1
+82 jxOmn-2n-m-2i +m(n_1)x9mn'2n'2m
i=1

Table 2: All quasi-orthogonal cuts of V-Phenylenic Planar K=VPHP[m,n], for m<n.

quasi-orthogonal cuts The length of goc strips The number of qoc strips
Ci 2m n
C, m n-1
Cs 2n m-1
Q Yi=1,...m-1 i 4
Qn 2m 4(n-m+1)

And alternatively, for m>n:

IT'(VPHP[m,n], x) |, = [Zmnx9mn2n3m +2n(3m-2n+1)x°™ " + 8

=2mn(9mn-2n-3m)+2n(3m-2n+1)(9mn-4n-m)

=81m%n’+ y n3-48mn?-23m?n+8n%+2m?+4mn- 8,/ n
3 3

n-1

2.

i=1

'
o IMn-2n-m2i +m (n _1) X9mn2n2mj

x=1

n-1
+Y_8i(9mn—2n—m~- 2i) +m(n-1)(9mn-2n-2m)

i=1
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And also, for m<n:

!

m-1

H(VPHPIM.AT)= | 2n(n-1)x"™ "™ +2m(2n-2m+3) x™ " +8) ix*™ "4 1 m(n-1) xgm"‘z”‘zmj
i=1

x=1

=2n(n-1)(9mn-4n-m)+2m(2n-2m+3) (9mn-2n-3m)

m-1
+Y8i(9mn—2n—m- 2i) +m(n-1)(9mn-2n-2m)

i=1

=81m%n’+ y m3-27m2n-40mn?-2m2+8n?+4mn- 8,/ n
3 3

From Figures 2, one can see that there are four types of edges-cuts in VV-Phenylenic nanotube G=VPHX[m,n] (we
denote these edges-cuts by C; (i=1,2,3) and C, see Table 3).

Table 3: All quasi-orthogonal cuts of VV-Phenylenic Nanotube G=VPHX[m,n].

quasi-orthogonal cuts The length of qoc strips The number of qoc strips
Ci 2m n
C, m n-1
Cs 2n m
C 2n 2m

Now, since G has 9mn-m edges, thus by using Tables 3 and the results from [23, 24], we have

vPHXImAL, 0= m(VPHX [m, n],c).c.x =P Imaie

9mn-m-2n 9mn-m-2n 9mn-m-m 9mn-m-2m

=4mnx +2mnx +m(n-1)x +2mnx

Imn-2n-m omn-2m 9mn-3m

=6mnx +m(n-1)x +2mnx

And alternatively,

II(VPHX[m,N]) = (6mnx’™ *" "+ m(n-1)x*™ " + 2mnx™™ " )’

x=1
=6mn(9mn-2n-m)+m(n-1)(9mn-2m)+2mn(9mn-3m)

=81m?n2-18m?2n -12mn?

In finally, for the V-Phenylenic Nanotori H=VPHY[m,n] with 6mn vertices/atoms and 9mn edges/bonds for all
integer number m,n, Figure 3 and Table 4 imply that the Pi polynomial and Pi index of H are equal to:

[E(VPHY[m,n])-C

m(vPHYmn]. =" m(VPHY [m,n], c).c.x

=4mnx9mn»2nm+2mnXan-2n+2mnXan»2m+m(n_1)X9mn-m

And alternatively,
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O(VPHY[m,n])= (4mnx™ 4™ 4 2mnx*™ 2"+ 2mnx™ 2" + m(n—1) ™" )'
x=1

=4mn(9mn-2nm)+2mn(9mn-2n)+2mn(9mn-2m)+m(n-1)(9mn-m)
=73m?n*-5nm? -4mn?+m?

Table 4: All quasi-orthogonal cuts of V-Phenylenic Nanotori H=VPHY[m,n] with 9mn edges/bonds

quasi-orthogonal cuts The length of goc strips The number of goc strips
C; 2m n
C, m n-1
C, 2n m
C 2nm 2
REFERENCES

[1] R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Weinheim, Wiley-VCH, 2000.
[2] N. Trinajsti¢, I. Gutman, Mathematical Chemistry, Croat. Chem. Acta, 75 (2002) 329 — 356.
[3] N. Trinajsti¢, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992.

[4] M.V. Diudea, S. Cigher, A.E. Vizitiu, O. Ursu and P. E. John. Omega polynomial in tubular nanostructures.
Croat. Chem. Acta, 79(3), 445-448. (2006).

[5] A.E. Vizitiu, S. Cigher, M.V. Diudea and M.S. Florescu, Omega polynomial in ((4,8)3) tubular nanostructures.
MATCH Commun. Math. Comput. Chem. 57(2), 479-484 (2007).

[6] S. Klavzar, MATCH Commun. Math. Comput. Chem. 59, 217 (2008).

[7] D.Z. Djokovi¢, J. Combin. Theory Ser. B, 14, 263 (1973).

[8] P.M. Winkler, Discrete Appl. Math., 8, 209 (1984).

[9] M. V. Diudea, Omega polynomial. Carpath. J. Math., 22, (2006) 43-47.

[10] P.E. John, A.E. Vizitiu, S. Cigher, and M.V. Diudea, MATCH Commun. Math. Comput. Chem. 57, 479 (2007).

[11] A.R. Ashrafi, M. Jalali, M. Ghorbani and M.V. Diudea. MATCH, Commun. Math. Comput. Chem., 60 (2008),
905-916

[12] M.V. Diudea and A. 1li¢, Note on Omega Polynomial. Carpath. J. Math., 20(1) (2009), 177 — 185.
[13] M.V. Diudea and S. Klavzar. Omega Polynomial Revisited. Acta Chim. Slov. 57, (2010), 565-570
[14] M.V. Diudea. Counting Polynomials in Tori T(4,4)S[c,n]. Acta Chim. Slov. 57, (2010), 551-558

[15] M.V. Diudea, S., Cigher, and P. E. John, Omega and related counting polynomials. MATCH Commun. Math.
Comput. Chem. 60, (2008) 237-250.

141



World Journal of Science and Technology Research
Vol. 1, No. 7, September 2013, PP: 135 - 143, ISSN: 2329 - 3837 (Online)
Available online at www.wjst.org

[16] M.V. Diudea, O., Ursu, and Cs. L. Nagy, TOPOCLUJ, Babes-Bolyai University: Cluj. (2002).

[17] M. Ghorbani, M. Ghazi. Computing Omega and PI polynomials of Graphs. Digest. J. Nanomater. Bios. 5(4),
2010, 843-849.

[18] M. Ghorbani, A Note On IPR fullerenes. Digest. J. Nanomater. Bios. 6(2), (2011), 599-602.

[19] M.R. Farahani, K. Kato and M.P. Vlad. Omega Polynomials and Cluj-Ilmenau Index of Circumcoronene Series
of Benzenoid. Studia Univ. Babes-Bolyai. Chemia 57(3), (2012), 177-182.

[20] M.R. Farahani. Computing ®(G,x) and I1(G,x) Polynomials of an Infinite Family of Benzenoid. Acta Chim.
Slov. 59, (2012), 965-968.

[21] M.R. Farahani. Theta and and Pi(G,x) polynomials of Hexagonal trapezoid system Th,a, Chemical Physics
Research Journal. in press (2013).

[22] M.R. Farahani. Omega and related counting polynomials of Triangular Benzenoid Gn and linear hexagonal
chain LHn. Journal of Chemica Acta 2 (2013) 43-45.

[23] M.R. Farahani. Computing ©(G,x) Polynomial of V-phenylenic Planar, Nanotubes and Nanotori, Submited for
publish, 2013.

[24] A. R. Ashrafi, M. Ghorbani and M. Jalali, Ind. J. Chem., 47A, 535 (2008).

[25] S.J. Cyvin and I. Gutman, Lecture Note in Chemistry, Springer-Verlag, Berlin, 1988. 46.
[26] I. Gutman and S.J. Cyvin, J. Chem. Phys. 1988, 147, 121-125.

[27] I. Gutman and S.J. Cyvin, J. Serb. Chem. Soc. 1990, 55, 555-561.

[28] I. Gutman and E.C. Kirby, J. Serb. Chem. Soc. 1994, 125, 539-547.

[29] I. Gutman, S. Markovic, V. Lukovic, V. Radivojevic and S. Randi¢. Coll. Sci. Papers Fac. Sci. Kragujevac,
1987, 8, 15-34.

[30] I. Gutman, P. Petkovic and P.V. Khadikar, Rev. Roum. De Chimie. 1996, 41, 637-643.

[31] M.V. Diudea, Fuller. Nanotub. Carbon Nanostruct, 2002, 10, 273-292.

[32] V. Alamian, A. Bahrami and B.Edalatzadeh, Int. J. Mol. Sci. 2008, 9, 229-234.

[33] M. Alaeiyan, A. Bahrami and M.R. Farahani, Digest. J. Nanomater. Bios. 2011, 6(1), 143-147.
[34] J. Asadpour, Optoelectron. Adv. Mater.-Rapid Commun. 2011, 5(7), 769-772.

[35] A. Bahrami and J. Yazdani, Digest. J. Nanomater. Bios. 2009, 4(1), 141-144.

[36] M. DavoudiMohfared, A. Bahrami and J. Yazdani, Digest. J. Nanomater. Bios. 2010, 5(2), 441-445.

142



World Journal of Science and Technology Research
Vol. 1, No. 7, September 2013, PP: 135 - 143, ISSN: 2329 - 3837 (Online)
Available online at www.wjst.org

[37] M.R. Farahani. Computing GAS5 index of VV-Phenylenic Nanotubes and Nanotori. Int J Chem Model. 5(2) in
press (2013).

[38] M.R. Farahani.Computing fourth atom-bond connectivity index of VV-Phenylenic Nanotubes and Nanotori. Acta
Chimica Slovenica. 60(2) (2013). In press.

[39] S. Aziz, A. Das. M. Peter, E. John And P.V. Khadikar. Iranian J. Math. Chem, 2010, 1(1), 79-90.

[40] P.E. John, S. Aziz, And P.V. Khadikar. Iranian J. Math. Chem, 2010, 1(1), 91-94.

[41] Z. Yarahmadi. Iranian J. Math. Chem, 2011, 2(2), 101-108.

[42] S. Moradi, S. Babarahimi and M. Ghorbani. Iranian J. Math. Chem, 2011, 2(2), 109-117.

[43] M. Ghorbani, H. Mesgarani, S. Shakeraneh, Optoelectron. Adv. Mater.-Rapid Commun. 2011, 5(3), 324-326.

[44] N. PrabhakaraRao and K.L. Lakshmi. Digest. J. Nanomater. Bios. 2010, 6(1), 81-87.

143



